metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.174D10, C10.372- (1+4), C10.822+ (1+4), C4⋊Q8⋊12D5, (C4×D5)⋊2Q8, C20⋊Q8⋊45C2, C4.41(Q8×D5), D10.6(C2×Q8), C20.55(C2×Q8), C4⋊C4.124D10, (C2×Q8).86D10, Dic5.7(C2×Q8), D10⋊Q8.4C2, C20.6Q8⋊24C2, C4.Dic10⋊43C2, C42⋊D5.8C2, Dic5⋊Q8⋊27C2, C10.49(C22×Q8), (C2×C20).106C23, (C4×C20).214C22, (C2×C10).273C24, D10⋊3Q8.13C2, C2.86(D4⋊6D10), Dic5.Q8⋊41C2, C4⋊Dic5.252C22, (Q8×C10).140C22, C22.294(C23×D5), D10⋊C4.52C22, C5⋊5(C23.41C23), (C2×Dic5).144C23, (C4×Dic5).170C22, (C22×D5).244C23, C2.38(Q8.10D10), (C2×Dic10).197C22, C10.D4.167C22, C2.32(C2×Q8×D5), (C5×C4⋊Q8)⋊15C2, (D5×C4⋊C4).13C2, C4⋊C4⋊7D5.15C2, (C2×C4×D5).155C22, (C5×C4⋊C4).216C22, (C2×C4).219(C22×D5), SmallGroup(320,1401)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 654 in 206 conjugacy classes, 103 normal (43 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×14], C22, C22 [×4], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×13], Q8 [×4], C23, D5 [×2], C10 [×3], C42, C42 [×3], C22⋊C4 [×4], C4⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×16], C22×C4 [×3], C2×Q8 [×2], C2×Q8 [×2], Dic5 [×2], Dic5 [×6], C20 [×2], C20 [×6], D10 [×2], D10 [×2], C2×C10, C2×C4⋊C4, C42⋊C2 [×2], C22⋊Q8 [×4], C42.C2 [×4], C4⋊Q8, C4⋊Q8 [×3], Dic10 [×2], C4×D5 [×4], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5, C23.41C23, C4×Dic5, C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×10], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4 [×2], D10⋊C4 [×2], C4×C20, C5×C4⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×2], Q8×C10 [×2], C20.6Q8, C42⋊D5, C20⋊Q8, Dic5.Q8 [×2], C4.Dic10, D5×C4⋊C4, C4⋊C4⋊7D5, D10⋊Q8 [×2], Dic5⋊Q8 [×2], D10⋊3Q8 [×2], C5×C4⋊Q8, C42.174D10
Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C24, D10 [×7], C22×Q8, 2+ (1+4), 2- (1+4), C22×D5 [×7], C23.41C23, Q8×D5 [×2], C23×D5, D4⋊6D10, C2×Q8×D5, Q8.10D10, C42.174D10
Generators and relations
G = < a,b,c,d | a4=b4=1, c10=d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >
(1 117 50 24)(2 25 51 118)(3 119 52 26)(4 27 53 120)(5 101 54 28)(6 29 55 102)(7 103 56 30)(8 31 57 104)(9 105 58 32)(10 33 59 106)(11 107 60 34)(12 35 41 108)(13 109 42 36)(14 37 43 110)(15 111 44 38)(16 39 45 112)(17 113 46 40)(18 21 47 114)(19 115 48 22)(20 23 49 116)(61 88 148 133)(62 134 149 89)(63 90 150 135)(64 136 151 91)(65 92 152 137)(66 138 153 93)(67 94 154 139)(68 140 155 95)(69 96 156 121)(70 122 157 97)(71 98 158 123)(72 124 159 99)(73 100 160 125)(74 126 141 81)(75 82 142 127)(76 128 143 83)(77 84 144 129)(78 130 145 85)(79 86 146 131)(80 132 147 87)
(1 155 60 78)(2 79 41 156)(3 157 42 80)(4 61 43 158)(5 159 44 62)(6 63 45 160)(7 141 46 64)(8 65 47 142)(9 143 48 66)(10 67 49 144)(11 145 50 68)(12 69 51 146)(13 147 52 70)(14 71 53 148)(15 149 54 72)(16 73 55 150)(17 151 56 74)(18 75 57 152)(19 153 58 76)(20 77 59 154)(21 82 104 137)(22 138 105 83)(23 84 106 139)(24 140 107 85)(25 86 108 121)(26 122 109 87)(27 88 110 123)(28 124 111 89)(29 90 112 125)(30 126 113 91)(31 92 114 127)(32 128 115 93)(33 94 116 129)(34 130 117 95)(35 96 118 131)(36 132 119 97)(37 98 120 133)(38 134 101 99)(39 100 102 135)(40 136 103 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 26 31 36)(22 35 32 25)(23 24 33 34)(27 40 37 30)(28 29 38 39)(41 58 51 48)(42 47 52 57)(43 56 53 46)(44 45 54 55)(49 50 59 60)(61 141 71 151)(62 150 72 160)(63 159 73 149)(64 148 74 158)(65 157 75 147)(66 146 76 156)(67 155 77 145)(68 144 78 154)(69 153 79 143)(70 142 80 152)(81 123 91 133)(82 132 92 122)(83 121 93 131)(84 130 94 140)(85 139 95 129)(86 128 96 138)(87 137 97 127)(88 126 98 136)(89 135 99 125)(90 124 100 134)(101 102 111 112)(103 120 113 110)(104 109 114 119)(105 118 115 108)(106 107 116 117)
G:=sub<Sym(160)| (1,117,50,24)(2,25,51,118)(3,119,52,26)(4,27,53,120)(5,101,54,28)(6,29,55,102)(7,103,56,30)(8,31,57,104)(9,105,58,32)(10,33,59,106)(11,107,60,34)(12,35,41,108)(13,109,42,36)(14,37,43,110)(15,111,44,38)(16,39,45,112)(17,113,46,40)(18,21,47,114)(19,115,48,22)(20,23,49,116)(61,88,148,133)(62,134,149,89)(63,90,150,135)(64,136,151,91)(65,92,152,137)(66,138,153,93)(67,94,154,139)(68,140,155,95)(69,96,156,121)(70,122,157,97)(71,98,158,123)(72,124,159,99)(73,100,160,125)(74,126,141,81)(75,82,142,127)(76,128,143,83)(77,84,144,129)(78,130,145,85)(79,86,146,131)(80,132,147,87), (1,155,60,78)(2,79,41,156)(3,157,42,80)(4,61,43,158)(5,159,44,62)(6,63,45,160)(7,141,46,64)(8,65,47,142)(9,143,48,66)(10,67,49,144)(11,145,50,68)(12,69,51,146)(13,147,52,70)(14,71,53,148)(15,149,54,72)(16,73,55,150)(17,151,56,74)(18,75,57,152)(19,153,58,76)(20,77,59,154)(21,82,104,137)(22,138,105,83)(23,84,106,139)(24,140,107,85)(25,86,108,121)(26,122,109,87)(27,88,110,123)(28,124,111,89)(29,90,112,125)(30,126,113,91)(31,92,114,127)(32,128,115,93)(33,94,116,129)(34,130,117,95)(35,96,118,131)(36,132,119,97)(37,98,120,133)(38,134,101,99)(39,100,102,135)(40,136,103,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,26,31,36)(22,35,32,25)(23,24,33,34)(27,40,37,30)(28,29,38,39)(41,58,51,48)(42,47,52,57)(43,56,53,46)(44,45,54,55)(49,50,59,60)(61,141,71,151)(62,150,72,160)(63,159,73,149)(64,148,74,158)(65,157,75,147)(66,146,76,156)(67,155,77,145)(68,144,78,154)(69,153,79,143)(70,142,80,152)(81,123,91,133)(82,132,92,122)(83,121,93,131)(84,130,94,140)(85,139,95,129)(86,128,96,138)(87,137,97,127)(88,126,98,136)(89,135,99,125)(90,124,100,134)(101,102,111,112)(103,120,113,110)(104,109,114,119)(105,118,115,108)(106,107,116,117)>;
G:=Group( (1,117,50,24)(2,25,51,118)(3,119,52,26)(4,27,53,120)(5,101,54,28)(6,29,55,102)(7,103,56,30)(8,31,57,104)(9,105,58,32)(10,33,59,106)(11,107,60,34)(12,35,41,108)(13,109,42,36)(14,37,43,110)(15,111,44,38)(16,39,45,112)(17,113,46,40)(18,21,47,114)(19,115,48,22)(20,23,49,116)(61,88,148,133)(62,134,149,89)(63,90,150,135)(64,136,151,91)(65,92,152,137)(66,138,153,93)(67,94,154,139)(68,140,155,95)(69,96,156,121)(70,122,157,97)(71,98,158,123)(72,124,159,99)(73,100,160,125)(74,126,141,81)(75,82,142,127)(76,128,143,83)(77,84,144,129)(78,130,145,85)(79,86,146,131)(80,132,147,87), (1,155,60,78)(2,79,41,156)(3,157,42,80)(4,61,43,158)(5,159,44,62)(6,63,45,160)(7,141,46,64)(8,65,47,142)(9,143,48,66)(10,67,49,144)(11,145,50,68)(12,69,51,146)(13,147,52,70)(14,71,53,148)(15,149,54,72)(16,73,55,150)(17,151,56,74)(18,75,57,152)(19,153,58,76)(20,77,59,154)(21,82,104,137)(22,138,105,83)(23,84,106,139)(24,140,107,85)(25,86,108,121)(26,122,109,87)(27,88,110,123)(28,124,111,89)(29,90,112,125)(30,126,113,91)(31,92,114,127)(32,128,115,93)(33,94,116,129)(34,130,117,95)(35,96,118,131)(36,132,119,97)(37,98,120,133)(38,134,101,99)(39,100,102,135)(40,136,103,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,26,31,36)(22,35,32,25)(23,24,33,34)(27,40,37,30)(28,29,38,39)(41,58,51,48)(42,47,52,57)(43,56,53,46)(44,45,54,55)(49,50,59,60)(61,141,71,151)(62,150,72,160)(63,159,73,149)(64,148,74,158)(65,157,75,147)(66,146,76,156)(67,155,77,145)(68,144,78,154)(69,153,79,143)(70,142,80,152)(81,123,91,133)(82,132,92,122)(83,121,93,131)(84,130,94,140)(85,139,95,129)(86,128,96,138)(87,137,97,127)(88,126,98,136)(89,135,99,125)(90,124,100,134)(101,102,111,112)(103,120,113,110)(104,109,114,119)(105,118,115,108)(106,107,116,117) );
G=PermutationGroup([(1,117,50,24),(2,25,51,118),(3,119,52,26),(4,27,53,120),(5,101,54,28),(6,29,55,102),(7,103,56,30),(8,31,57,104),(9,105,58,32),(10,33,59,106),(11,107,60,34),(12,35,41,108),(13,109,42,36),(14,37,43,110),(15,111,44,38),(16,39,45,112),(17,113,46,40),(18,21,47,114),(19,115,48,22),(20,23,49,116),(61,88,148,133),(62,134,149,89),(63,90,150,135),(64,136,151,91),(65,92,152,137),(66,138,153,93),(67,94,154,139),(68,140,155,95),(69,96,156,121),(70,122,157,97),(71,98,158,123),(72,124,159,99),(73,100,160,125),(74,126,141,81),(75,82,142,127),(76,128,143,83),(77,84,144,129),(78,130,145,85),(79,86,146,131),(80,132,147,87)], [(1,155,60,78),(2,79,41,156),(3,157,42,80),(4,61,43,158),(5,159,44,62),(6,63,45,160),(7,141,46,64),(8,65,47,142),(9,143,48,66),(10,67,49,144),(11,145,50,68),(12,69,51,146),(13,147,52,70),(14,71,53,148),(15,149,54,72),(16,73,55,150),(17,151,56,74),(18,75,57,152),(19,153,58,76),(20,77,59,154),(21,82,104,137),(22,138,105,83),(23,84,106,139),(24,140,107,85),(25,86,108,121),(26,122,109,87),(27,88,110,123),(28,124,111,89),(29,90,112,125),(30,126,113,91),(31,92,114,127),(32,128,115,93),(33,94,116,129),(34,130,117,95),(35,96,118,131),(36,132,119,97),(37,98,120,133),(38,134,101,99),(39,100,102,135),(40,136,103,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,26,31,36),(22,35,32,25),(23,24,33,34),(27,40,37,30),(28,29,38,39),(41,58,51,48),(42,47,52,57),(43,56,53,46),(44,45,54,55),(49,50,59,60),(61,141,71,151),(62,150,72,160),(63,159,73,149),(64,148,74,158),(65,157,75,147),(66,146,76,156),(67,155,77,145),(68,144,78,154),(69,153,79,143),(70,142,80,152),(81,123,91,133),(82,132,92,122),(83,121,93,131),(84,130,94,140),(85,139,95,129),(86,128,96,138),(87,137,97,127),(88,126,98,136),(89,135,99,125),(90,124,100,134),(101,102,111,112),(103,120,113,110),(104,109,114,119),(105,118,115,108),(106,107,116,117)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 0 |
| 0 | 0 | 0 | 0 | 0 | 11 |
| 0 | 0 | 26 | 0 | 0 | 0 |
| 0 | 0 | 0 | 26 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 24 | 1 | 0 | 0 |
| 0 | 0 | 40 | 17 | 0 | 0 |
| 0 | 0 | 0 | 0 | 24 | 1 |
| 0 | 0 | 0 | 0 | 40 | 17 |
| 27 | 7 | 0 | 0 | 0 | 0 |
| 7 | 14 | 0 | 0 | 0 | 0 |
| 0 | 0 | 34 | 34 | 27 | 27 |
| 0 | 0 | 7 | 1 | 14 | 2 |
| 0 | 0 | 7 | 7 | 7 | 7 |
| 0 | 0 | 34 | 40 | 34 | 40 |
| 14 | 34 | 0 | 0 | 0 | 0 |
| 34 | 27 | 0 | 0 | 0 | 0 |
| 0 | 0 | 34 | 34 | 27 | 27 |
| 0 | 0 | 1 | 7 | 2 | 14 |
| 0 | 0 | 7 | 7 | 7 | 7 |
| 0 | 0 | 40 | 34 | 40 | 34 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,26,0,0,11,0,0,0,0,0,0,11,0,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,24,40,0,0,0,0,1,17,0,0,0,0,0,0,24,40,0,0,0,0,1,17],[27,7,0,0,0,0,7,14,0,0,0,0,0,0,34,7,7,34,0,0,34,1,7,40,0,0,27,14,7,34,0,0,27,2,7,40],[14,34,0,0,0,0,34,27,0,0,0,0,0,0,34,1,7,40,0,0,34,7,7,34,0,0,27,2,7,40,0,0,27,14,7,34] >;
50 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | ··· | 4H | 4I | 4J | 4K | ··· | 4P | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | + | + | - | - | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | D5 | D10 | D10 | D10 | 2+ (1+4) | 2- (1+4) | Q8×D5 | D4⋊6D10 | Q8.10D10 |
| kernel | C42.174D10 | C20.6Q8 | C42⋊D5 | C20⋊Q8 | Dic5.Q8 | C4.Dic10 | D5×C4⋊C4 | C4⋊C4⋊7D5 | D10⋊Q8 | Dic5⋊Q8 | D10⋊3Q8 | C5×C4⋊Q8 | C4×D5 | C4⋊Q8 | C42 | C4⋊C4 | C2×Q8 | C10 | C10 | C4 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 4 | 2 | 2 | 8 | 4 | 1 | 1 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{174}D_{10} % in TeX
G:=Group("C4^2.174D10"); // GroupNames label
G:=SmallGroup(320,1401);
// by ID
G=gap.SmallGroup(320,1401);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,675,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations